Update recall entity weighting and prompt sections
This commit is contained in:
@@ -296,19 +296,34 @@ function buildEntityLexicon(store, allEvents) {
|
||||
.slice(0, 5000);
|
||||
}
|
||||
|
||||
function extractEntities(text, lexicon) {
|
||||
const t = normalize(text);
|
||||
if (!t || !lexicon?.length) return [];
|
||||
/**
|
||||
* 从分段消息中提取实体,继承消息权重
|
||||
* @param {string[]} segments
|
||||
* @param {number[]} weights
|
||||
* @param {string[]} lexicon
|
||||
* @returns {Map<string, number>}
|
||||
*/
|
||||
function extractEntitiesWithWeights(segments, weights, lexicon) {
|
||||
const entityWeights = new Map();
|
||||
|
||||
const sorted = [...lexicon].sort((a, b) => b.length - a.length);
|
||||
const hits = [];
|
||||
for (const e of sorted) {
|
||||
if (t.includes(e)) hits.push(e);
|
||||
if (hits.length >= 20) break;
|
||||
if (!segments?.length || !lexicon?.length) return entityWeights;
|
||||
|
||||
for (let i = 0; i < segments.length; i++) {
|
||||
const text = normalize(segments[i]);
|
||||
const weight = weights?.[i] || 0;
|
||||
|
||||
for (const entity of lexicon) {
|
||||
if (text.includes(entity)) {
|
||||
const existing = entityWeights.get(entity) || 0;
|
||||
if (weight > existing) {
|
||||
entityWeights.set(entity, weight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return hits;
|
||||
}
|
||||
|
||||
return entityWeights;
|
||||
}
|
||||
// ═══════════════════════════════════════════════════════════════════════════
|
||||
// MMR
|
||||
// ═══════════════════════════════════════════════════════════════════════════
|
||||
@@ -457,7 +472,7 @@ async function searchChunks(queryVector, vectorConfig, l0FloorBonus = new Map(),
|
||||
// L2 Events 检索(RRF 混合 + MMR 后置)
|
||||
// ═══════════════════════════════════════════════════════════════════════════
|
||||
|
||||
async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorConfig, store, queryEntities, l0FloorBonus = new Map()) {
|
||||
async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorConfig, store, queryEntityWeights, l0FloorBonus = new Map()) {
|
||||
const { chatId } = getContext();
|
||||
if (!chatId || !queryVector?.length) return [];
|
||||
|
||||
@@ -475,11 +490,14 @@ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorCo
|
||||
|
||||
// 文本路检索
|
||||
const textRanked = searchEventsByText(queryTextForSearch, CONFIG.TEXT_SEARCH_LIMIT);
|
||||
const textGapInfo = textRanked._gapInfo || null;
|
||||
|
||||
// ═══════════════════════════════════════════════════════════════════════
|
||||
// 向量路检索(只保留 L0 加权)
|
||||
// ═══════════════════════════════════════════════════════════════════════
|
||||
|
||||
const ENTITY_BONUS_FACTOR = 0.10;
|
||||
|
||||
const scored = (allEvents || []).map((event, idx) => {
|
||||
const v = vectorMap.get(event.id);
|
||||
const sim = v ? cosineSimilarity(queryVector, v) : 0;
|
||||
@@ -497,6 +515,17 @@ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorCo
|
||||
}
|
||||
}
|
||||
|
||||
const participants = (event.participants || []).map(p => normalize(p));
|
||||
let maxEntityWeight = 0;
|
||||
for (const p of participants) {
|
||||
const w = queryEntityWeights.get(p) || 0;
|
||||
if (w > maxEntityWeight) {
|
||||
maxEntityWeight = w;
|
||||
}
|
||||
}
|
||||
const entityBonus = ENTITY_BONUS_FACTOR * maxEntityWeight;
|
||||
bonus += entityBonus;
|
||||
|
||||
return {
|
||||
_id: event.id,
|
||||
_idx: idx,
|
||||
@@ -504,9 +533,12 @@ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorCo
|
||||
similarity: sim,
|
||||
finalScore: sim + bonus,
|
||||
vector: v,
|
||||
_entityBonus: entityBonus,
|
||||
};
|
||||
});
|
||||
|
||||
const entityBonusById = new Map(scored.map(s => [s._id, s._entityBonus]));
|
||||
|
||||
const preFilterDistribution = {
|
||||
total: scored.length,
|
||||
'0.85+': scored.filter(s => s.finalScore >= 0.85).length,
|
||||
@@ -518,7 +550,6 @@ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorCo
|
||||
threshold: CONFIG.MIN_SIMILARITY_EVENT,
|
||||
};
|
||||
|
||||
// 向量路:纯相似度排序(不在这里做 MMR)
|
||||
const candidates = scored
|
||||
.filter(s => s.finalScore >= CONFIG.MIN_SIMILARITY_EVENT)
|
||||
.sort((a, b) => b.finalScore - a.finalScore)
|
||||
@@ -530,15 +561,12 @@ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorCo
|
||||
vector: s.vector,
|
||||
}));
|
||||
|
||||
// RRF 融合
|
||||
const eventById = new Map(allEvents.map(e => [e.id, e]));
|
||||
const fused = fuseEventsByRRF(vectorRanked, textRanked, eventById);
|
||||
|
||||
// 向量非空时过滤纯 TEXT
|
||||
const hasVector = vectorRanked.length > 0;
|
||||
const filtered = hasVector ? fused.filter(x => x.type !== 'TEXT') : fused;
|
||||
|
||||
// MMR 放在融合后:对最终候选集去重
|
||||
const mmrInput = filtered.slice(0, CONFIG.CANDIDATE_EVENTS).map(x => ({
|
||||
...x,
|
||||
_id: x.id,
|
||||
@@ -551,7 +579,6 @@ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorCo
|
||||
c => c.vector || null,
|
||||
c => c.rrf
|
||||
);
|
||||
|
||||
// 构造结果
|
||||
const results = mmrOutput.map(x => ({
|
||||
event: x.event,
|
||||
@@ -559,6 +586,7 @@ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorCo
|
||||
_recallType: x.type === 'HYBRID' ? 'DIRECT' : 'SIMILAR',
|
||||
_recallReason: x.type,
|
||||
_rrfDetail: { vRank: x.vRank, tRank: x.tRank, rrf: x.rrf },
|
||||
_entityBonus: entityBonusById.get(x.event?.id) || 0,
|
||||
}));
|
||||
|
||||
// 统计信息附加到第一条结果
|
||||
@@ -571,6 +599,7 @@ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorCo
|
||||
vectorOnlyCount: fused.filter(x => x.type === 'VECTOR').length,
|
||||
textOnlyFiltered: fused.filter(x => x.type === 'TEXT').length,
|
||||
};
|
||||
results[0]._textGapInfo = textGapInfo;
|
||||
}
|
||||
|
||||
return results;
|
||||
@@ -587,10 +616,11 @@ function formatRecallLog({
|
||||
chunkResults,
|
||||
eventResults,
|
||||
allEvents,
|
||||
queryEntities,
|
||||
queryEntityWeights = new Map(),
|
||||
causalEvents = [],
|
||||
chunkPreFilterStats = null,
|
||||
l0Results = [],
|
||||
textGapInfo = null,
|
||||
}) {
|
||||
const lines = [
|
||||
'\u2554' + '\u2550'.repeat(62) + '\u2557',
|
||||
@@ -621,7 +651,18 @@ function formatRecallLog({
|
||||
lines.push('\u250c' + '\u2500'.repeat(61) + '\u2510');
|
||||
lines.push('\u2502 【提取实体】 \u2502');
|
||||
lines.push('\u2514' + '\u2500'.repeat(61) + '\u2518');
|
||||
lines.push(` ${queryEntities?.length ? queryEntities.join('、') : '(无)'}`);
|
||||
|
||||
if (queryEntityWeights?.size) {
|
||||
const sorted = Array.from(queryEntityWeights.entries())
|
||||
.sort((a, b) => b[1] - a[1])
|
||||
.slice(0, 8);
|
||||
const formatted = sorted
|
||||
.map(([e, w]) => `${e}(${(w * 100).toFixed(0)}%)`)
|
||||
.join(' | ');
|
||||
lines.push(` ${formatted}`);
|
||||
} else {
|
||||
lines.push(' (无)');
|
||||
}
|
||||
|
||||
lines.push('');
|
||||
lines.push('\u250c' + '\u2500'.repeat(61) + '\u2510');
|
||||
@@ -642,7 +683,7 @@ function formatRecallLog({
|
||||
lines.push(' L1 原文片段:');
|
||||
if (chunkPreFilterStats) {
|
||||
const dist = chunkPreFilterStats.distribution || {};
|
||||
lines.push(` \u5168\u91cf: ${chunkPreFilterStats.total} \u6761 | \u901a\u8fc7\u9608\u503c(\u8fdc\u671f\u2265${chunkPreFilterStats.thresholdRemote}, \u5f85\u6574\u7406\u2265${chunkPreFilterStats.thresholdRecent}): ${chunkPreFilterStats.passThreshold} \u6761 | \u6700\u7ec8: ${chunkResults.length} \u6761`);
|
||||
lines.push(` 全量: ${chunkPreFilterStats.total} 条 | 通过阈值(远期≥${chunkPreFilterStats.thresholdRemote}, 待整理≥${chunkPreFilterStats.thresholdRecent}): ${chunkPreFilterStats.passThreshold} 条 | 最终: ${chunkResults.length} 条`);
|
||||
lines.push(` 匹配度: 0.8+: ${dist['0.8+'] || 0} | 0.7-0.8: ${dist['0.7-0.8'] || 0} | 0.6-0.7: ${dist['0.6-0.7'] || 0}`);
|
||||
} else {
|
||||
lines.push(` 选入: ${chunkResults.length} 条`);
|
||||
@@ -656,6 +697,18 @@ function formatRecallLog({
|
||||
lines.push(` 总事件: ${allEvents.length} 条 | 最终: ${eventResults.length} 条`);
|
||||
lines.push(` 向量路: ${rrfStats.vectorCount || 0} 条 | 文本路: ${rrfStats.textCount || 0} 条`);
|
||||
lines.push(` HYBRID: ${rrfStats.hybridCount || 0} 条 | 纯 VECTOR: ${rrfStats.vectorOnlyCount || 0} 条 | 纯 TEXT (已过滤): ${rrfStats.textOnlyFiltered || 0} 条`);
|
||||
const entityBoostedEvents = eventResults.filter(e => e._entityBonus > 0).length;
|
||||
lines.push(` 实体加分事件: ${entityBoostedEvents} 条`);
|
||||
|
||||
if (textGapInfo) {
|
||||
lines.push('');
|
||||
lines.push(' 文本检索 (BM25 动态 top-K):');
|
||||
lines.push(` 命中: ${textGapInfo.total} 条 | 返回: ${textGapInfo.returned} 条 (覆盖 ${textGapInfo.coverage} 总分)`);
|
||||
if (textGapInfo.scoreRange) {
|
||||
const s = textGapInfo.scoreRange;
|
||||
lines.push(` 分数: Top=${s.top} | 截断=${s.cutoff} | P50=${s.p50} | Last=${s.last}`);
|
||||
}
|
||||
}
|
||||
|
||||
// Causal
|
||||
if (causalEvents.length) {
|
||||
@@ -702,7 +755,8 @@ export async function recallMemory(queryText, allEvents, vectorConfig, options =
|
||||
}
|
||||
|
||||
const lexicon = buildEntityLexicon(store, allEvents);
|
||||
const queryEntities = extractEntities(segments.join('\n'), lexicon);
|
||||
const queryEntityWeights = extractEntitiesWithWeights(segments, weights, lexicon);
|
||||
const queryEntities = Array.from(queryEntityWeights.keys());
|
||||
|
||||
// 构建文本查询串:最后一条消息 + 实体 + 关键词
|
||||
const lastSeg = segments[segments.length - 1] || '';
|
||||
@@ -727,10 +781,11 @@ export async function recallMemory(queryText, allEvents, vectorConfig, options =
|
||||
|
||||
const [chunkResults, eventResults] = await Promise.all([
|
||||
searchChunks(queryVector, vectorConfig, l0FloorBonus, lastSummarizedFloor),
|
||||
searchEvents(queryVector, queryTextForSearch, allEvents, vectorConfig, store, queryEntities, l0FloorBonus),
|
||||
searchEvents(queryVector, queryTextForSearch, allEvents, vectorConfig, store, queryEntityWeights, l0FloorBonus),
|
||||
]);
|
||||
|
||||
const chunkPreFilterStats = chunkResults._preFilterStats || null;
|
||||
const textGapInfo = eventResults[0]?._textGapInfo || null;
|
||||
|
||||
const mergedChunks = mergeAndSparsify(l0VirtualChunks, chunkResults, CONFIG.FLOOR_MAX_CHUNKS);
|
||||
|
||||
@@ -764,10 +819,11 @@ export async function recallMemory(queryText, allEvents, vectorConfig, options =
|
||||
chunkResults: mergedChunks,
|
||||
eventResults,
|
||||
allEvents,
|
||||
queryEntities,
|
||||
queryEntityWeights,
|
||||
causalEvents: causalEventsTruncated,
|
||||
chunkPreFilterStats,
|
||||
l0Results,
|
||||
textGapInfo,
|
||||
});
|
||||
|
||||
console.group('%c[Recall]', 'color: #7c3aed; font-weight: bold');
|
||||
|
||||
Reference in New Issue
Block a user