// Story Summary - Recall Engine // L1 chunk + L2 event 召回 // - 全量向量打分 // - 指数衰减加权 Query Embedding // - L0 floor 加权 // - RRF 混合检索(向量 + 文本) // - MMR 去重(融合后执行) // - floor 稀疏去重 import { getAllEventVectors, getAllChunkVectors, getChunksByFloors, getMeta } from './chunk-store.js'; import { embed, getEngineFingerprint } from './embedder.js'; import { xbLog } from '../../../core/debug-core.js'; import { getContext } from '../../../../../../extensions.js'; import { getSummaryStore, getFacts, getNewCharacters, isRelationFact } from '../data/store.js'; import { filterText } from './text-filter.js'; import { searchStateAtoms, buildL0FloorBonus, stateToVirtualChunks, mergeAndSparsify, } from './state-recall.js'; import { ensureEventTextIndex, searchEventsByText } from './text-search.js'; const MODULE_ID = 'recall'; const CONFIG = { QUERY_MSG_COUNT: 5, QUERY_DECAY_BETA: 0.7, QUERY_MAX_CHARS: 600, QUERY_CONTEXT_CHARS: 240, CAUSAL_CHAIN_MAX_DEPTH: 10, CAUSAL_INJECT_MAX: 30, CANDIDATE_CHUNKS: 200, CANDIDATE_EVENTS: 150, MAX_CHUNKS: 40, MAX_EVENTS: 120, MIN_SIMILARITY_CHUNK: 0.6, MIN_SIMILARITY_CHUNK_RECENT: 0.5, MIN_SIMILARITY_EVENT: 0.65, MMR_LAMBDA: 0.72, L0_FLOOR_BONUS_FACTOR: 0.10, FLOOR_MAX_CHUNKS: 2, FLOOR_LIMIT: 1, RRF_K: 60, TEXT_SEARCH_LIMIT: 80, }; // ═══════════════════════════════════════════════════════════════════════════ // 工具函数 // ═══════════════════════════════════════════════════════════════════════════ function cosineSimilarity(a, b) { if (!a?.length || !b?.length || a.length !== b.length) return 0; let dot = 0, nA = 0, nB = 0; for (let i = 0; i < a.length; i++) { dot += a[i] * b[i]; nA += a[i] * a[i]; nB += b[i] * b[i]; } return nA && nB ? dot / (Math.sqrt(nA) * Math.sqrt(nB)) : 0; } function normalizeVec(v) { let s = 0; for (let i = 0; i < v.length; i++) s += v[i] * v[i]; s = Math.sqrt(s) || 1; return v.map(x => x / s); } // ═══════════════════════════════════════════════════════════════════════════ // RRF 融合 // ═══════════════════════════════════════════════════════════════════════════ function fuseEventsByRRF(vectorRanked, textRanked, eventById, k = CONFIG.RRF_K) { const map = new Map(); const upsert = (id) => { if (!map.has(id)) { map.set(id, { id, rrf: 0, vRank: Infinity, tRank: Infinity, type: 'TEXT' }); } return map.get(id); }; vectorRanked.forEach((r, i) => { const id = r.event?.id; if (!id) return; const o = upsert(id); o.vRank = i + 1; o.rrf += 1 / (k + i + 1); o.type = o.tRank !== Infinity ? 'HYBRID' : 'VECTOR'; o.vector = r.vector; }); textRanked.forEach((r) => { const o = upsert(r.id); o.tRank = r.textRank; o.rrf += 1 / (k + r.textRank); o.type = o.vRank !== Infinity ? 'HYBRID' : 'TEXT'; }); const typePriority = { HYBRID: 0, VECTOR: 1, TEXT: 2 }; return Array.from(map.values()) .map(o => ({ ...o, event: eventById.get(o.id) })) .filter(x => x.event) .sort((a, b) => { if (b.rrf !== a.rrf) return b.rrf - a.rrf; if (typePriority[a.type] !== typePriority[b.type]) { return typePriority[a.type] - typePriority[b.type]; } if (a.vRank !== b.vRank) return a.vRank - b.vRank; return a.tRank - b.tRank; }); } // ═══════════════════════════════════════════════════════════════════════════ // 因果链追溯 // ═══════════════════════════════════════════════════════════════════════════ function buildEventIndex(allEvents) { const map = new Map(); for (const e of allEvents || []) { if (e?.id) map.set(e.id, e); } return map; } function traceCausalAncestors(recalledEvents, eventIndex, maxDepth = CONFIG.CAUSAL_CHAIN_MAX_DEPTH) { const out = new Map(); const idRe = /^evt-\d+$/; function visit(parentId, depth, chainFrom) { if (depth > maxDepth) return; if (!idRe.test(parentId)) return; const ev = eventIndex.get(parentId); if (!ev) return; const existed = out.get(parentId); if (!existed) { out.set(parentId, { event: ev, depth, chainFrom: [chainFrom] }); } else { if (depth < existed.depth) existed.depth = depth; if (!existed.chainFrom.includes(chainFrom)) existed.chainFrom.push(chainFrom); } for (const next of (ev.causedBy || [])) { visit(String(next || '').trim(), depth + 1, chainFrom); } } for (const r of recalledEvents || []) { const rid = r?.event?.id; if (!rid) continue; for (const cid of (r.event?.causedBy || [])) { visit(String(cid || '').trim(), 1, rid); } } return out; } function sortCausalEvents(causalArray) { return causalArray.sort((a, b) => { const refDiff = b.chainFrom.length - a.chainFrom.length; if (refDiff !== 0) return refDiff; const depthDiff = a.depth - b.depth; if (depthDiff !== 0) return depthDiff; return String(a.event.id).localeCompare(String(b.event.id)); }); } function normalize(s) { return String(s || '').normalize('NFKC').replace(/[\u200B-\u200D\uFEFF]/g, '').trim(); } function parseFloorRange(summary) { if (!summary) return null; const match = String(summary).match(/\(#(\d+)(?:-(\d+))?\)/); if (!match) return null; const start = Math.max(0, parseInt(match[1], 10) - 1); const end = Math.max(0, (match[2] ? parseInt(match[2], 10) : parseInt(match[1], 10)) - 1); return { start, end }; } function cleanForRecall(text) { return filterText(text).replace(/\[tts:[^\]]*\]/gi, '').trim(); } function buildExpDecayWeights(n, beta) { const last = n - 1; const w = Array.from({ length: n }, (_, i) => Math.exp(beta * (i - last))); const sum = w.reduce((a, b) => a + b, 0) || 1; return w.map(x => x / sum); } // ═══════════════════════════════════════════════════════════════════════════ // Query 构建 // ═══════════════════════════════════════════════════════════════════════════ function buildQuerySegments(chat, count, excludeLastAi, pendingUserMessage = null) { if (!chat?.length) return []; const { name1 } = getContext(); let messages = chat; if (excludeLastAi && messages.length > 0 && !messages[messages.length - 1]?.is_user) { messages = messages.slice(0, -1); } if (pendingUserMessage) { const lastMsg = messages[messages.length - 1]; const lastMsgText = lastMsg?.mes?.trim() || ""; const pendingText = pendingUserMessage.trim(); if (lastMsgText !== pendingText) { messages = [...messages, { is_user: true, name: name1 || "用户", mes: pendingUserMessage }]; } } return messages.slice(-count).map((m, idx, arr) => { const speaker = m.name || (m.is_user ? (name1 || "用户") : "角色"); const clean = cleanForRecall(m.mes); if (!clean) return ''; const limit = idx === arr.length - 1 ? CONFIG.QUERY_MAX_CHARS : CONFIG.QUERY_CONTEXT_CHARS; return `${speaker}: ${clean.slice(0, limit)}`; }).filter(Boolean); } async function embedWeightedQuery(segments, vectorConfig) { if (!segments?.length) return null; const weights = buildExpDecayWeights(segments.length, CONFIG.QUERY_DECAY_BETA); const vecs = await embed(segments, vectorConfig); const dims = vecs?.[0]?.length || 0; if (!dims) return null; const out = new Array(dims).fill(0); for (let i = 0; i < vecs.length; i++) { for (let j = 0; j < dims; j++) out[j] += (vecs[i][j] || 0) * weights[i]; } return { vector: normalizeVec(out), weights }; } // ═══════════════════════════════════════════════════════════════════════════ // 实体抽取 // ═══════════════════════════════════════════════════════════════════════════ function buildEntityLexicon(store, allEvents) { const { name1 } = getContext(); const userName = normalize(name1); const set = new Set(); const facts = getFacts(store); for (const f of facts) { if (f?.retracted) continue; const s = normalize(f?.s); if (s) set.add(s); if (isRelationFact(f)) { const o = normalize(f?.o); if (o) set.add(o); } } const chars = getNewCharacters(store); for (const m of chars || []) { const s = normalize(typeof m === 'string' ? m : m?.name); if (s) set.add(s); } for (const e of allEvents || []) { for (const p of e.participants || []) { const s = normalize(p); if (s) set.add(s); } } for (const a of store?.json?.arcs || []) { const s = normalize(a?.name); if (s) set.add(s); } const stop = new Set([userName, '我', '你', '他', '她', '它', '用户', '角色', 'assistant'].map(normalize).filter(Boolean)); return Array.from(set) .filter(s => s.length >= 2 && !stop.has(s) && !/^[\s\p{P}\p{S}]+$/u.test(s) && !/<[^>]+>/.test(s)) .slice(0, 5000); } function buildFactGraph(facts) { const graph = new Map(); for (const f of facts || []) { if (f?.retracted) continue; if (!isRelationFact(f)) continue; const s = normalize(f?.s); const o = normalize(f?.o); if (!s || !o) continue; if (!graph.has(s)) graph.set(s, new Set()); if (!graph.has(o)) graph.set(o, new Set()); graph.get(s).add(o); graph.get(o).add(s); } return graph; } function expandByFacts(presentEntities, facts, maxDepth = 2) { const graph = buildFactGraph(facts); const expanded = new Map(); const seeds = Array.from(presentEntities || []).map(normalize).filter(Boolean); seeds.forEach(e => expanded.set(e, 1.0)); let frontier = [...seeds]; for (let d = 1; d <= maxDepth && frontier.length; d++) { const next = []; const decay = Math.pow(0.5, d); for (const e of frontier) { const neighbors = graph.get(e); if (!neighbors) continue; for (const neighbor of neighbors) { if (!expanded.has(neighbor)) { expanded.set(neighbor, decay); next.push(neighbor); } } } frontier = next.slice(0, 20); } return Array.from(expanded.entries()) .sort((a, b) => b[1] - a[1]) .slice(0, 15) .map(([term]) => term); } function stripFloorTag(s) { return String(s || '').replace(/\s*\(#\d+(?:-\d+)?\)\s*$/, '').trim(); } export function buildEventEmbeddingText(ev) { const parts = []; if (ev?.title) parts.push(ev.title); const people = (ev?.participants || []).join(' '); if (people) parts.push(people); if (ev?.type) parts.push(ev.type); const summary = stripFloorTag(ev?.summary); if (summary) parts.push(summary); return parts.filter(Boolean).join(' '); } /** * 从分段消息中提取实体,继承消息权重 * @param {string[]} segments * @param {number[]} weights * @param {string[]} lexicon * @returns {Map} */ function extractEntitiesWithWeights(segments, weights, lexicon) { const entityWeights = new Map(); if (!segments?.length || !lexicon?.length) return entityWeights; for (let i = 0; i < segments.length; i++) { const text = normalize(segments[i]); const weight = weights?.[i] || 0; for (const entity of lexicon) { if (text.includes(entity)) { const existing = entityWeights.get(entity) || 0; if (weight > existing) { entityWeights.set(entity, weight); } } } } return entityWeights; } // ═══════════════════════════════════════════════════════════════════════════ // MMR // ═══════════════════════════════════════════════════════════════════════════ function mmrSelect(candidates, k, lambda, getVector, getScore) { const selected = []; const ids = new Set(); while (selected.length < k && candidates.length) { let best = null, bestScore = -Infinity; for (const c of candidates) { if (ids.has(c._id)) continue; const rel = getScore(c); let div = 0; if (selected.length) { const vC = getVector(c); if (vC?.length) { for (const s of selected) { const sim = cosineSimilarity(vC, getVector(s)); if (sim > div) div = sim; } } } const score = lambda * rel - (1 - lambda) * div; if (score > bestScore) { bestScore = score; best = c; } } if (!best) break; selected.push(best); ids.add(best._id); } return selected; } // ═══════════════════════════════════════════════════════════════════════════ // L1 Chunks 检索 // ═══════════════════════════════════════════════════════════════════════════ async function searchChunks(queryVector, vectorConfig, l0FloorBonus = new Map(), lastSummarizedFloor = -1) { const { chatId } = getContext(); if (!chatId || !queryVector?.length) return []; const meta = await getMeta(chatId); const fp = getEngineFingerprint(vectorConfig); if (meta.fingerprint && meta.fingerprint !== fp) return []; const chunkVectors = await getAllChunkVectors(chatId); if (!chunkVectors.length) return []; const scored = chunkVectors.map(cv => { const match = String(cv.chunkId).match(/c-(\d+)-(\d+)/); const floor = match ? parseInt(match[1], 10) : 0; const baseSim = cosineSimilarity(queryVector, cv.vector); const l0Bonus = l0FloorBonus.get(floor) || 0; return { _id: cv.chunkId, chunkId: cv.chunkId, floor, chunkIdx: match ? parseInt(match[2], 10) : 0, similarity: baseSim + l0Bonus, _baseSimilarity: baseSim, _l0Bonus: l0Bonus, vector: cv.vector, }; }); const candidates = scored .filter(s => { const threshold = s.floor > lastSummarizedFloor ? CONFIG.MIN_SIMILARITY_CHUNK_RECENT : CONFIG.MIN_SIMILARITY_CHUNK; return s.similarity >= threshold; }) .sort((a, b) => b.similarity - a.similarity) .slice(0, CONFIG.CANDIDATE_CHUNKS); const preFilterStats = { total: scored.length, passThreshold: candidates.length, thresholdRemote: CONFIG.MIN_SIMILARITY_CHUNK, thresholdRecent: CONFIG.MIN_SIMILARITY_CHUNK_RECENT, distribution: { '0.8+': scored.filter(s => s.similarity >= 0.8).length, '0.7-0.8': scored.filter(s => s.similarity >= 0.7 && s.similarity < 0.8).length, '0.6-0.7': scored.filter(s => s.similarity >= 0.6 && s.similarity < 0.7).length, '0.55-0.6': scored.filter(s => s.similarity >= 0.55 && s.similarity < 0.6).length, '<0.55': scored.filter(s => s.similarity < 0.55).length, }, }; const dynamicK = Math.min(CONFIG.MAX_CHUNKS, candidates.length); const selected = mmrSelect( candidates, dynamicK, CONFIG.MMR_LAMBDA, c => c.vector, c => c.similarity ); const bestByFloor = new Map(); for (const s of selected) { const prev = bestByFloor.get(s.floor); if (!prev || s.similarity > prev.similarity) { bestByFloor.set(s.floor, s); } } const sparse = Array.from(bestByFloor.values()).sort((a, b) => b.similarity - a.similarity); const floors = [...new Set(sparse.map(c => c.floor))]; const chunks = await getChunksByFloors(chatId, floors); const chunkMap = new Map(chunks.map(c => [c.chunkId, c])); const results = sparse.map(item => { const chunk = chunkMap.get(item.chunkId); if (!chunk) return null; return { chunkId: item.chunkId, floor: item.floor, chunkIdx: item.chunkIdx, speaker: chunk.speaker, isUser: chunk.isUser, text: chunk.text, similarity: item.similarity, }; }).filter(Boolean); if (results.length > 0) { results._preFilterStats = preFilterStats; } return results; } // ═══════════════════════════════════════════════════════════════════════════ // L2 Events 检索(RRF 混合 + MMR 后置) // ═══════════════════════════════════════════════════════════════════════════ async function searchEvents(queryVector, queryTextForSearch, allEvents, vectorConfig, store, queryEntityWeights, l0FloorBonus = new Map()) { const { chatId } = getContext(); if (!chatId || !queryVector?.length) return []; const meta = await getMeta(chatId); const fp = getEngineFingerprint(vectorConfig); if (meta.fingerprint && meta.fingerprint !== fp) return []; const eventVectors = await getAllEventVectors(chatId); const vectorMap = new Map(eventVectors.map(v => [v.eventId, v.vector])); if (!vectorMap.size) return []; // 构建/更新文本索引 const revision = `${chatId}:${store?.updatedAt || 0}:${allEvents.length}`; ensureEventTextIndex(allEvents, revision); // 文本路检索 const textRanked = searchEventsByText(queryTextForSearch, CONFIG.TEXT_SEARCH_LIMIT); const textGapInfo = textRanked._gapInfo || null; // ═══════════════════════════════════════════════════════════════════════ // 向量路检索(只保留 L0 加权) // ═══════════════════════════════════════════════════════════════════════ const ENTITY_BONUS_FACTOR = 0.10; const scored = (allEvents || []).map((event, idx) => { const v = vectorMap.get(event.id); const sim = v ? cosineSimilarity(queryVector, v) : 0; let bonus = 0; // L0 加权 const range = parseFloorRange(event.summary); if (range) { for (let f = range.start; f <= range.end; f++) { if (l0FloorBonus.has(f)) { bonus += l0FloorBonus.get(f); break; } } } const participants = (event.participants || []).map(p => normalize(p)); let maxEntityWeight = 0; for (const p of participants) { const w = queryEntityWeights.get(p) || 0; if (w > maxEntityWeight) { maxEntityWeight = w; } } const entityBonus = ENTITY_BONUS_FACTOR * maxEntityWeight; bonus += entityBonus; return { _id: event.id, _idx: idx, event, similarity: sim, finalScore: sim + bonus, vector: v, _entityBonus: entityBonus, }; }); const entityBonusById = new Map(scored.map(s => [s._id, s._entityBonus])); const preFilterDistribution = { total: scored.length, '0.85+': scored.filter(s => s.finalScore >= 0.85).length, '0.7-0.85': scored.filter(s => s.finalScore >= 0.7 && s.finalScore < 0.85).length, '0.6-0.7': scored.filter(s => s.finalScore >= 0.6 && s.finalScore < 0.7).length, '0.5-0.6': scored.filter(s => s.finalScore >= 0.5 && s.finalScore < 0.6).length, '<0.5': scored.filter(s => s.finalScore < 0.5).length, passThreshold: scored.filter(s => s.finalScore >= CONFIG.MIN_SIMILARITY_EVENT).length, threshold: CONFIG.MIN_SIMILARITY_EVENT, }; const candidates = scored .filter(s => s.finalScore >= CONFIG.MIN_SIMILARITY_EVENT) .sort((a, b) => b.finalScore - a.finalScore) .slice(0, CONFIG.CANDIDATE_EVENTS); const vectorRanked = candidates.map(s => ({ event: s.event, similarity: s.finalScore, vector: s.vector, })); const eventById = new Map(allEvents.map(e => [e.id, e])); const fused = fuseEventsByRRF(vectorRanked, textRanked, eventById); const hasVector = vectorRanked.length > 0; const filtered = hasVector ? fused.filter(x => x.type !== 'TEXT') : fused; const mmrInput = filtered.slice(0, CONFIG.CANDIDATE_EVENTS).map(x => ({ ...x, _id: x.id, })); const mmrOutput = mmrSelect( mmrInput, CONFIG.MAX_EVENTS, CONFIG.MMR_LAMBDA, c => c.vector || null, c => c.rrf ); // 构造结果 const results = mmrOutput.map(x => ({ event: x.event, similarity: x.rrf, _recallType: x.type === 'HYBRID' ? 'DIRECT' : 'SIMILAR', _recallReason: x.type, _rrfDetail: { vRank: x.vRank, tRank: x.tRank, rrf: x.rrf }, _entityBonus: entityBonusById.get(x.event?.id) || 0, })); // 统计信息附加到第一条结果 if (results.length > 0) { results[0]._preFilterDistribution = preFilterDistribution; results[0]._rrfStats = { vectorCount: vectorRanked.length, textCount: textRanked.length, hybridCount: fused.filter(x => x.type === 'HYBRID').length, vectorOnlyCount: fused.filter(x => x.type === 'VECTOR').length, textOnlyFiltered: fused.filter(x => x.type === 'TEXT').length, }; results[0]._textGapInfo = textGapInfo; } return results; } // ═══════════════════════════════════════════════════════════════════════════ // 日志 // ═══════════════════════════════════════════════════════════════════════════ function formatRecallLog({ elapsed, segments, weights, chunkResults, eventResults, allEvents, queryEntityWeights = new Map(), causalEvents = [], chunkPreFilterStats = null, l0Results = [], textGapInfo = null, expandedTerms = [], }) { const lines = [ '\u2554' + '\u2550'.repeat(62) + '\u2557', '\u2551 记忆召回报告 \u2551', '\u2560' + '\u2550'.repeat(62) + '\u2563', `\u2551 耗时: ${elapsed}ms`, '\u255a' + '\u2550'.repeat(62) + '\u255d', '', '\u250c' + '\u2500'.repeat(61) + '\u2510', '\u2502 【查询构建】最近 5 条消息,指数衰减加权 (β=0.7) \u2502', '\u2514' + '\u2500'.repeat(61) + '\u2518', ]; const segmentsSorted = segments.map((s, i) => ({ idx: i + 1, weight: weights?.[i] ?? 0, text: s, })).sort((a, b) => b.weight - a.weight); segmentsSorted.forEach((s, rank) => { const bar = '\u2588'.repeat(Math.round(s.weight * 20)); const preview = s.text.length > 60 ? s.text.slice(0, 60) + '...' : s.text; const marker = rank === 0 ? ' ◀ 主导' : ''; lines.push(` ${(s.weight * 100).toFixed(1).padStart(5)}% ${bar.padEnd(12)} ${preview}${marker}`); }); lines.push(''); lines.push('\u250c' + '\u2500'.repeat(61) + '\u2510'); lines.push('\u2502 【提取实体】 \u2502'); lines.push('\u2514' + '\u2500'.repeat(61) + '\u2518'); if (queryEntityWeights?.size) { const sorted = Array.from(queryEntityWeights.entries()) .sort((a, b) => b[1] - a[1]) .slice(0, 8); const formatted = sorted .map(([e, w]) => `${e}(${(w * 100).toFixed(0)}%)`) .join(' | '); lines.push(` ${formatted}`); } else { lines.push(' (无)'); } if (expandedTerms?.length) { lines.push(` 扩散: ${expandedTerms.join('、')}`); } lines.push(''); lines.push('\u250c' + '\u2500'.repeat(61) + '\u2510'); lines.push('\u2502 【召回统计】 \u2502'); lines.push('\u2514' + '\u2500'.repeat(61) + '\u2518'); // L0 const l0Floors = [...new Set(l0Results.map(r => r.floor))].sort((a, b) => a - b); lines.push(' L0 语义锚点:'); if (l0Results.length) { lines.push(` 选入: ${l0Results.length} 条 | 影响楼层: ${l0Floors.join(', ')} (+${CONFIG.L0_FLOOR_BONUS_FACTOR} 加权)`); } else { lines.push(' (无数据)'); } // L1 lines.push(''); lines.push(' L1 原文片段:'); if (chunkPreFilterStats) { const dist = chunkPreFilterStats.distribution || {}; lines.push(` 全量: ${chunkPreFilterStats.total} 条 | 通过阈值(远期≥${chunkPreFilterStats.thresholdRemote}, 待整理≥${chunkPreFilterStats.thresholdRecent}): ${chunkPreFilterStats.passThreshold} 条 | 最终: ${chunkResults.length} 条`); lines.push(` 匹配度: 0.8+: ${dist['0.8+'] || 0} | 0.7-0.8: ${dist['0.7-0.8'] || 0} | 0.6-0.7: ${dist['0.6-0.7'] || 0}`); } else { lines.push(` 选入: ${chunkResults.length} 条`); } // L2 const rrfStats = eventResults[0]?._rrfStats || {}; lines.push(''); lines.push(' L2 事件记忆 (RRF 混合检索):'); lines.push(` 总事件: ${allEvents.length} 条 | 最终: ${eventResults.length} 条`); lines.push(` 向量路: ${rrfStats.vectorCount || 0} 条 | 文本路: ${rrfStats.textCount || 0} 条`); lines.push(` HYBRID: ${rrfStats.hybridCount || 0} 条 | 纯 VECTOR: ${rrfStats.vectorOnlyCount || 0} 条 | 纯 TEXT (已过滤): ${rrfStats.textOnlyFiltered || 0} 条`); const entityBoostedEvents = eventResults.filter(e => e._entityBonus > 0).length; lines.push(` 实体加分事件: ${entityBoostedEvents} 条`); if (textGapInfo) { lines.push(''); lines.push(' 文本检索 (BM25 动态 top-K):'); lines.push(` 命中: ${textGapInfo.total} 条 | 返回: ${textGapInfo.returned} 条 (覆盖 ${textGapInfo.coverage} 总分)`); if (textGapInfo.scoreRange) { const s = textGapInfo.scoreRange; lines.push(` 分数: Top=${s.top} | 截断=${s.cutoff} | P50=${s.p50} | Last=${s.last}`); } } // Causal if (causalEvents.length) { const maxRefs = Math.max(...causalEvents.map(c => c.chainFrom?.length || 0)); const maxDepth = Math.max(...causalEvents.map(c => c.depth || 0)); lines.push(''); lines.push(' 因果链追溯:'); lines.push(` 追溯: ${causalEvents.length} 条 | 最大被引: ${maxRefs} 次 | 最大深度: ${maxDepth}`); } lines.push(''); return lines.join('\n'); } // ═══════════════════════════════════════════════════════════════════════════ // 主入口 // ═══════════════════════════════════════════════════════════════════════════ export async function recallMemory(queryText, allEvents, vectorConfig, options = {}) { const T0 = performance.now(); const { chat } = getContext(); const store = getSummaryStore(); const lastSummarizedFloor = store?.lastSummarizedMesId ?? -1; const { pendingUserMessage = null } = options; if (!allEvents?.length) { return { events: [], chunks: [], elapsed: 0, logText: 'No events.' }; } const segments = buildQuerySegments(chat, CONFIG.QUERY_MSG_COUNT, !!options.excludeLastAi, pendingUserMessage); let queryVector, weights; try { const result = await embedWeightedQuery(segments, vectorConfig); queryVector = result?.vector; weights = result?.weights; } catch (e) { xbLog.error(MODULE_ID, '查询向量生成失败', e); return { events: [], chunks: [], elapsed: Math.round(performance.now() - T0), logText: 'Query embedding failed.' }; } if (!queryVector?.length) { return { events: [], chunks: [], elapsed: Math.round(performance.now() - T0), logText: 'Empty query vector.' }; } const lexicon = buildEntityLexicon(store, allEvents); const queryEntityWeights = extractEntitiesWithWeights(segments, weights, lexicon); const queryEntities = Array.from(queryEntityWeights.keys()); const facts = getFacts(store); const expandedTerms = expandByFacts(queryEntities, facts, 2); // 构建文本查询串:最后一条消息 + 实体 + 关键词 const lastSeg = segments[segments.length - 1] || ''; const queryTextForSearch = [ lastSeg, ...queryEntities, ...expandedTerms, ...(store?.json?.keywords || []).slice(0, 5).map(k => k.text), ].join(' '); // L0 召回 let l0Results = []; let l0FloorBonus = new Map(); let l0VirtualChunks = []; try { l0Results = await searchStateAtoms(queryVector, vectorConfig); l0FloorBonus = buildL0FloorBonus(l0Results, CONFIG.L0_FLOOR_BONUS_FACTOR); l0VirtualChunks = stateToVirtualChunks(l0Results); } catch (e) { xbLog.warn(MODULE_ID, 'L0 召回失败,降级处理', e); } const [chunkResults, eventResults] = await Promise.all([ searchChunks(queryVector, vectorConfig, l0FloorBonus, lastSummarizedFloor), searchEvents(queryVector, queryTextForSearch, allEvents, vectorConfig, store, queryEntityWeights, l0FloorBonus), ]); const chunkPreFilterStats = chunkResults._preFilterStats || null; const textGapInfo = eventResults[0]?._textGapInfo || null; const mergedChunks = mergeAndSparsify(l0VirtualChunks, chunkResults, CONFIG.FLOOR_MAX_CHUNKS); // 因果链追溯 const eventIndex = buildEventIndex(allEvents); const causalMap = traceCausalAncestors(eventResults, eventIndex); const recalledIdSet = new Set(eventResults.map(x => x?.event?.id).filter(Boolean)); const causalEvents = Array.from(causalMap.values()) .filter(x => x?.event?.id && !recalledIdSet.has(x.event.id)) .map(x => ({ event: x.event, similarity: 0, _recallType: 'CAUSAL', _recallReason: `因果链(${x.chainFrom.join(',')})`, _causalDepth: x.depth, _chainFrom: x.chainFrom, chainFrom: x.chainFrom, depth: x.depth, })); sortCausalEvents(causalEvents); const causalEventsTruncated = causalEvents.slice(0, CONFIG.CAUSAL_INJECT_MAX); const elapsed = Math.round(performance.now() - T0); const logText = formatRecallLog({ elapsed, queryText, segments, weights, chunkResults: mergedChunks, eventResults, allEvents, queryEntityWeights, causalEvents: causalEventsTruncated, chunkPreFilterStats, l0Results, textGapInfo, expandedTerms, }); console.group('%c[Recall]', 'color: #7c3aed; font-weight: bold'); console.log(`Elapsed: ${elapsed}ms | L0: ${l0Results.length} | Entities: ${queryEntities.join(', ') || '(none)'}`); console.log(`L1: ${mergedChunks.length} | L2: ${eventResults.length}/${allEvents.length} | Causal: ${causalEventsTruncated.length}`); console.groupEnd(); return { events: eventResults, causalEvents: causalEventsTruncated, chunks: mergedChunks, elapsed, logText, queryEntities, l0Results }; } export function buildQueryText(chat, count = 2, excludeLastAi = false) { if (!chat?.length) return ''; let messages = chat; if (excludeLastAi && messages.length > 0 && !messages[messages.length - 1]?.is_user) { messages = messages.slice(0, -1); } return messages.slice(-count).map(m => { const text = cleanForRecall(m.mes); const speaker = m.name || (m.is_user ? '用户' : '角色'); return `${speaker}: ${text.slice(0, 500)}`; }).filter(Boolean).join('\n'); }